a prevalent one-center component arising from the $p_{y}p_{x}$ transition density of the oxygen atom. In this respect, the transition is similar to the $n \rightarrow \pi^*$ transition in ketones. The high charge density around the oxygen in the σ molecular orbital also provides an explanation to the solvent shift of the transition (Table I) and to the fact that the protonation site of sulfoxides is at the oxygen atom.⁶

References and Notes

- (1) (a) H. H. Jaffe and M. Orchin, "Theory and Applications of Ultraviolet Spectroscopy", Wiley, New York, N.Y., 1962, p 491; (b) J. N. Murrel "The Theory of the Electronic Spectra of Organic Molecules", Methuen, 1963, 1973 p 176
- (2) (a) G. L. Bendazzoli, G. Gottarelli, P. Palmieri, and G. Torre, Mol. Phys., 25, 473 (1973); (b) G. L. Bendazzoli, G. Gottarelli, and P. Palmieri, J. Am. Chem. Soc., 96, 11 (1974).

- (3) T. Taunetsugu, J. Furukawa, and T. Fueno, J. Polym. Sci., 3, 3529 (1971).
 (4) K. Kondo and A. Negishi, *Tetrahedron*, 27, 4821 (1971).
 (5) A. Moskowitz "Modern Quantum Chemistry", 3d ed, O. Sinanoglu, Ed., Academic Press, New York, N.Y., 1965, p 31.
 (6) G. Gatti, A. Levi, V. Lucchini, G. Modena, and G. Scorrano, J. Chem. Soc., Chem. Commun. 251 (1973). Chem. Commun., 251 (1973).

G. L. Bendazzoli, P. Palmieri*

Istituto di Chimica Fisica e Spettroscopia Facoltá di Chimica Industriale, Universitá di Bologna Bologna, Italy

G. Gottarelli

Istituto di Chimica degli Intermedi Facoltá di Chimica Industriale, Universitá di Bologna Bologna, Italy

I. Moretti, G. Torre

Istituto di Chimica Organica, Universitá di Modena Modena, Italy Received December 9, 1975

Assignment of a Methylated Sulfur Dioxide Structure, [CH₃O=S=O]⁺, to the Species Present in CH₃F-SbF₅-SO₂ Solutions and Precipitation of a Salt of [CH₃O=S=O]⁺ upon Addition of SO₂ to CH₃F-SbF₅-SO₂ClF

Sir:

The question of the structure of methyl fluoride-antimony fluoride mixtures in SO₂ and other solvents has received detailed study in Olah's group¹ and Gillespie's.² We now report that reaction of SO₂ with CH₃F-SbF₅ in SO₂ClF at -78° gives a white, filterable precipitate which is inferred, from experiments to be described, to contain the cation 1, the product of methylation of sulfur dioxide. The accompanying anion may be SbF_6^- (eq 1) or $Sb_2F_{11}^-$.

$$CH_{3}F-SbF_{5} + SO_{2} \xrightarrow{SO_{2}CIF} [CH_{3}O=S=O]^{+} + SbF_{6}^{-}$$
(1)

We further propose that 1 is the principal² carbon-containing species present in SO₂ solutions of CH₃F-SbF₅. Presently, various Lewis complex structures, e.g., 2a or 2b, have been proposed to accomodate the rather extensive body of data pertaining to this system.^{1,2} In 2a or 2b, but not in 1, rapid exchange of carbon-fluorine bonds must be postulated to account for the absence of coupling to ¹⁹F in the ¹H and ¹³C NMR spectrum.

$$\begin{array}{ccc} \mathrm{CH}_3\mathrm{F} &\longrightarrow & \mathrm{Sb}\mathrm{F}_6 & \mathrm{CH}_3\mathrm{F} &\longrightarrow & \mathrm{Sb}_2\mathrm{F}_{10} \\ & \mathbf{2a} & & \mathbf{2b} \end{array}$$

We have found that the solid formed from SbF5 and CH_3F in SO₂ClF reacts with methanol or ethanol at -65°

to give substantial amounts of dimethyl sulfite (4) or methyl ethyl sulfite (5).³ Similarly, solutions of CH₃F-SbF₅ in SO_2 (1 M) appear to give sulfite esters in good yields upon reaction with methanol or ethanol. These products suggest that 1 is the reactant present in $CH_3F-SbF_5-SO_2$ and in the solid precipitated from SO₂ClF (eq. 1).

Two complicating circumstances must be mentioned. First, sulfite esters proved to undergo facile transesterification in acidic alcohol solutions. Our preparation of the reference sulfite 5 resulted in formation of 4 and 6 also (eq 2).^{4,5} Accordingly, it is not surprising that the above mentioned reaction of 1 M CH₃F-SbF₅-SO₂ with EtOH (3 mol, -65°) gave a mixture of 4 (14%), 5 (41%), and 6

$$\begin{array}{c} O & O & O \\ \uparrow \\ CH_{3}SCl \xrightarrow{EtOH} CH_{3}OSOCH_{3} + CH_{3}OSOEt + EtOSOEt \\ 4 & 5 & 6 \end{array}$$
(2)

(36%), based on GC analysis of the ethanol solution. Second, SO_2 itself was shown to form some dimethyl sulfite (4) upon addition of 1 M SbF₅ in SO_2 to methanol, followed by workup with $H_2O-CH_2Cl_2$. However, the amount was only 18% of the amount of 4 (101% yield, GC; 82% distilled) formed by addition of 1 M CH₃F-SbF₅ to CH₃OH (3 mol, -65°).

Despite the complicating circumstances, the overall results appear to provide strong support for the hypothesis that most of the sulfite esters obtained from CH₃F-SbF₅-SO₂ arose from the initial reaction of cation 1 according to eq 3. The demonstration³ that the solid material (eq 1)

$$[CH_3O = S = O]^+ + ROH \longrightarrow CH_3OSOR + H^+ \qquad (3)$$

gives mainly methyl ethyl sulfite upon reaction with ethanol constitutes strong evidence that SO_2 is capable of forming a monomethylated derivative, strengthening the hypothesis that 1 may exist in SO₂ solutions. As expected, the ¹H NMR spectrum of the solid dissolved in SO₂ was identical with that of CH_3F -SbF₅ in SO₂.

That 1 (instead of 2a or 2b) is the predominant species present in CH₃F-SbF₅-SO₂ is indicated by the following argument. If 1 is present only in trace amounts in rapid equilibrium with 2a or 2b, the weak nucleophile SO₂ must be alkylated faster by 2a or 2b than the much more nucleophilic alcohols, in order to account for the formation of alkyl sulfites upon reaction of CH₃F-SbF₅-SO₂ with alcohols. A similar situation occurs in the case of the recently reported,⁶ high yield "ene" reaction of CH₃F-SbF₅-SO₂ (eq 4), although in this instance the relative nucleophilicity of SO₂ and alkenes is not obvious.

$$[CH_{3}O = S = O]^{+} + = \langle X \rightarrow X \rangle = \langle X + H^{+} \rangle \langle A \rangle$$

Why has structure 2a or 2b been accepted while 1 was given only passing consideration? Below we reexamine five principal lines of evidence which provide insight into the situation. The evidence is shown to be compatible with structure 1.

(1) Reactions with Alcohols. Alcohols previously were reported^{1b} to give methyl ethers upon reaction with CH₃F- SbF_5-SO_2 . The ethers (which may have been formed under different conditions, e.g., by reaction of moist SO2 with CH₃F-SbF₅) provided no evidence for the incorporation of SO_2 in the reactant.

(2) Raman Spectra. Considerable reliance has been placed

2660

Journal of the American Chemical Society / 98:9 / April 28, 1976

on evidence from Raman spectroscopy that a relatively unperturbed methyl fluoride moiety is present in CH₃F-SbF₅-SO₂.^{1b} We presume that the band at 1008 cm⁻¹, close to that of CH₃F (1010) arises from 1. Although the close coincidence is unusual, it may be noted that in terms of 2a or 2b it is also remarkable that the Raman frequency is so slightly perturbed in the "complex" while NMR spectra are substantially different from those of CH₃F.

(3) Carbon NMR. The ¹³C NMR spectrum of CH₃F-SbF₅-SO₂ (δ (CS₂) 119, J_{CH} = 149 Hz) appears to be equally compatible with structures 1 and 2a or 2b.

(4) Fluorine NMR results. An analogue of the structure 1 is formed from EtF-SbF5.^{1,2} In terms of the complex structure, the conversion of 7 (analogous to 2b) to tert-butyl cation (eq 5) gave puzzling ¹⁹F NMR results.

$$2CH_3CH_2F \rightarrow Sb_2F_{10} \rightarrow H^+ + (CH_3)_3C^+ + 2Sb_2F_{11}^-$$
(5)

Bacon and Gillespie² noted: "We are forced to the, at first sight, somewhat surprising conclusions that the fluorine spectrum of $Sb_2F_{11}^-$ is essentially the same when it is present as the free ion together with the tert-butyl cation or in a complex with ethyl ion." The proposal that the reactant has the ethylated SO₂ structure [CH₃CH₂O=S=O]⁺ resolves the problem, since $Sb_2F_{11}^-$ is present also in the reactant.

(5) The Apparent Formation of 2a or 2b in Other Solvents. According to our hypothesis the species formed from CH₃F-SbF₅ in SO₂ClF (δ 5.6), 1:1 HF-SbF₅ (δ 5.5), and neat SbF₅ (δ 5.5), previously assumed to be identical with that formed in SO₂ (δ 5.56), must have structures different from 1. Anticipating that readers would be reluctant to accept this coincidence, we have reprepared solutions of CH₃F-SbF₅-SO₂ClF. The previously undetermined ¹³C NMR chemical shift, 81.92 ppm from Me₄Si, is, in fact, 8.21 ppm from that found in CH_3F -SbF₅·SO₂ solutions (δ (Me₄Si) 73.71, our value, or 74.8^{2b,7}). That solvent effects were not responsible for the difference is indicated by our finding that 16¹³C chemical shifts in four nonequilibrating halonium ions in SO₂ClF were within the range -0.64 to +0.9 from their value in SO₂.⁸ Accordingly, a species different from 1, possibly methylated SO₂ClF or one of the originally proposed structures 2a or 2b, is present in the SO₂ClF system. The formation of a precipitate upon addition of SO_2 is readily interpreted as a reaction to form an insoluble salt of methylated SO_2 , 1, whereas 2a or 2b should not have given a precipitate, since, according to the previous interpretation, they are soluble in both solvents.

Our results suggest that other nucleophiles may be found to react with CH₃F-SbF₅-SO₂ at sulfur, followed by rearrangement to products of reaction at carbon. The results also indicate that methyl and primary cations cannot be formed in SO_2 solutions because they react with SO_2 , not with SbF_6^- as previously thought. The possibility that cations of intermediate stability (between primary and tertbutyl) will exist in closely balanced, temperature dependent⁹ equilibria with their SO₂ reaction products is suggested.

References and Notes

- (a) G. A. Olah, J. R. DeMember, and R. H. Schlosberg, J. Am. Chem. Soc., 91, 2112 (1969); (b) G. A. Olah, J. R. DeMember, R. H. Schlosberg, and Y. Halpern, *ibid.*, 94, 156 (1972).
 (2) J. Bacon and R. J. Gillespie, J. Am. Chem. Soc., 93, 6914 (1971).
 (3) The yield of dimetryl sulfite was 44%, based on GC analysis of the Strengt exclusion. (200)
- methanol solution. The products of reaction with ethanol (30 -65° were poured over ice-water and immediately extracted with CH_2Cl_2 to avoid complete transesterification, discussed later in this communication. Relative percent: dimethyl sulfite (4, 18%), methyl ethyl sulfite (5, 62%), and diethyl sulfite (6, 20%).
- (4) Pure samples for quantitative gas chromatography were obtained by high-speed spinning-band distillation. (5) For a similar result see E. Bourgeois and A. Vande Casteel, *Bull. Soc.*

Chim. Belg., 12, 980 (1927); "Beilsteins Handbuch der Organischen Chemle", 4th ed, 2d Suppl., Vol I, p 326.

- (6) P. E. Peterson, R. Brockington, and M. Dunham, J. Am. Chem. Soc., 97, 3517 (1975)
- Converted from CS₂ reference by subtraction from 193.8 ppm. (7)
- (8) S. P. McManus and P. E. Peterson, unpublished values. Cf. S. P. McManus and P. E. Peterson, Tetrahedron Lett., 2753 (1975).
- (9) P. M. Henrichs and P. E. Peterson, J. Am. Chem. Soc., 95, 7449 (1973).

Paul E. Peterson,* Rhett Brockington, D. Warren Vidrine Department of Chemistry, University of South Carolina Columbia, South Carolina 29208 Received October 25, 1975

Observation of the Methyl Fluoride-Antimony Pentafluoride Complex in Sulfuryl Fluoride Solution, an **Exceedingly Low Nucleophilicity Solvent. Reinvestigation** of the Complex in Sulfur Dioxide and Sulfuryl Chloride Fluoride Solution Showing O-Methylation¹

Sir:

In our previous studies we have described the complex formed between methyl fluoride and antimony pentafluoride in sulfur dioxide and sulfuryl chloride fluoride solution, and reported its exceptional methylating ability.^{2,3}

An unusual aspect of the CH₃F-SbF₅ complex in SO₂ and SO₂ClF solution was the absence of H-F coupling in the NMR spectra, showing a singlet ¹H NMR absorption at δ 5.56 and 5.63, respectively. As there was no exchange with excess uncomplexed methyl fluoride or antimony pentafluoride, we interpreted the results as a rapid intramolecular fluorine exchange in the complex. We have reported that O-methylation of sulfur dioxide by the complex can take place, but considered it to be a fast reversible process. We have, however, not suggested that this process, rather than the intramolecular fluorine exchange process, would be responsible for the absence of H-F coupling. This consideration was supported by the observation of a very similar spectrum of the complex in SO₂ClF solution, a system in which previously no alkylation by any carbocationic species was observed. Further, the methyl fluoride complex showed little deshielding in its ¹³C NMR spectrum in SO₂ (δ_{13C} 76.0) compared to methyl fluoride itself (δ_{13C} 74.9, INDOR data) and the Raman spectra also indicated tetrahedral symmetry around carbon. Thus the suggestion at the time seemed reasonable.

In our continued work, we have found that it was possible to isolate a relatively stable complex of methyl fluorideantimony pentafluoride as a crystalline salt from the SO₂ solution. Elementary analysis, however, showed that the complex contained bonded SO_2 , which was given off upon standing. When dissolved in SO_2 the complex gave identical properties with the original solution. This observation prompted us to reinvestigate the SO₂ and SO₂ClF solution of the CH₃F-SbF₅ system, including more complete ¹³C and ¹⁹F NMR, as well as chemical studies.

The CH₃F-SbF₅-SO₂ system showed the previously reported ¹H and ¹³C NMR shifts of δ 5.50 (singlet) and δ_C 74.9 (quartet), with J_{CH} of 162.5 Hz. The CH₃F-SbF₅-SO₂ClF system also showed the previously observed ¹H NMR singlet at δ 5.63. The ¹³C NMR shift, as now determined by FT method, is at δ 81.9 with $J_{CH} = 165.9$ Hz. In addition the ¹⁹F spectrum shows, besides the characteristic broad absorption of the fluoroantimonate system ($\phi \sim 100$, studied in detail by Bacon and Gillespie,4) and that of SO₂ClF (ϕ -98.9), a singlet absorption at ϕ -90.8, which is different from that observed for the SO₂ClF-SbF₅ complex ($\phi - 94.9$).